

The Effect of Prevailing Wage Laws on Informal Construction Employment

ICERES Research Symposium

August 10, 2021

Matt Hinkel
Ph.D. Candidate
School of Human Resources and Labor Relations
Michigan State University

Background

 Hinkel and Belman (2021): prevailing wage requirements add, at most, 6% to the cost of affordable housing construction

- Suggest the "net" cost could be lower
 - At least part of the cost could be the cost of doing business legally
- Research Question: do prevailing wage requirements entice better behavior and adherence to labor and employment law?

Definition and Impacts of Informality

- Informal employment: (a) misclassification of employees as independent contractors and (b) off-the-books employment
- Rampant in construction, along with other illegal practices (e.g., Ormiston, Belman, and Erlich 2020; Ormiston, Belman, Brockman, and Hinkel 2020; Juravich, Ormiston, and Belman 2021)
- Effects on markets, workers, and governments

Literature Review: Regulatory Quantity and Quality

- Distinguishing between regulatory *quantity* and *quality* and firm decisions (Johnson et al. 1997; Enste 2010; Ulyssea 2018)
- Higher regulatory quantity *increases* informal employment (Johnson et al. 1998; Friedman et al. 2000; Enste 2010)
- But higher regulatory quality *lowers* informal employment (Dabla-Norris et al. 2008; Almeida & Carneiro 2006)

Theory Summary

- Assume construction firms face two distinct choices for each project: (1) to operate formally, or (2) to operate informally
 - If firms choose informality, assume they pay no payroll or revenue taxes (Ulyssea 2018)
- Informal firms face detection probability, $\rho > 0$, by regulators
 - If detected, the outcome is that informal firms face a cost imposed by regulators, c
- Expected cost of detection for informal firms: $\mathbf{E}(\mathbf{D})_{ip} = \rho \mathbf{c}$, by firm (i) and project (p)

Theory Summary

- PW: prevailing wage requirement
 - PW = 1: subject to PW requirements. PW = 0: not subject to these requirements.
- For firms choosing to operate informally, indexed by firm and project, we have:
 - $\rho_{ip} | PW = 1 > \rho_{ip} | PW = 0$

• As ρ increases, the expected cost of detection, E(D), also increases. All else equal, this *lowers* the profits of informal construction firms.

Theory Summary

 Meanwhile, profits of formal construction firms remain unaffected by this. Since formal firms are following the law, their probability of evasion detection is 0.

- Summary: prevailing wage requirements increase the probability of evasion detection, lowering profits of firms choosing to operate informally
 - Conversely, since formal firms face a probability of evasion detection of 0, this is unchanged by prevailing wage requirements
- *Hypothesis 1:* The presence of state prevailing wage laws is negatively associated with informal employment.

Hypotheses 2 and 3

- Simply comparing states with prevailing wage laws and states without them does not tell the full story
- Thieblot (1995, 1999) developed methodology for measuring PW strength
 - States with higher scores (i.e., stronger laws) should have lower informality
 - Hypothesis 2: States with stronger prevailing wage laws will have lower rates of informal construction employment than states with weaker laws.
- Coverage thresholds: lower thresholds => more project covered by

Hypothesis 4

- Breadth of coverage: wider varieties of projects covered by prevailing wages should be associated with lower informality
 - Certified payroll requirements are applied to more projects
 - Hypothesis 4: States with more types of projects covered will have lower rates of informal construction employment than states with fewer project types covered.

Sample

- 2010-2019 state-level data from all 50 states
- Six state repeals during this period
 - In 2010, 33 states had prevailing wage laws, and 17 did not; by 2019, 27 states had prevailing wage laws, and 23 did not
- Study compares annual household employment data from the American Community Survey (ACS) against payroll records from the Bureau of Economic Analysis (BEA) over this 10-year period
 - Sample reduction (results were robust)

Measuring Informal Employment

- Measuring informal employment involves a hurdle: its measurement
 - Concealed from direct governmental oversight
 - · Direct measurement is impossible with existing data
- This study takes an indirect approach (Bohn & Owens 2012; Abraham, Haltiwanger, Sandusky, & Speltzer 2013; Ormiston et al. 2020)
 - Compares annual household employment data from the ACS against official firm employment data from the (BEA) for 2010-2019

Measuring Informal Employment

- Bohn and Owens (2012) use the following equation:
 - Informal Employment_{st} = Total Workforce_{st} Official Employment_{st}
 - Indexed by state (s) and year (t)
 - Total workforce: total amount of self-reported wage-and-salary employment (ACS)
 - Official employment: total W-2 jobs from official employer records (BEA)
 - Calculate Informal Rate = Informal Employment/Total Workforce
- Problem: ignores all workers who claim to be self-

Solution

- New equation: Total Informal Employment_{st} = (Total Workforce_{st} Official Employment_{st}) + Informal Self-Employment_{st}
- Informal self-employment: proxy using income underreporting rates of self-employed workers (Alm and Erard 2016; Ormiston et al. 2020)
 - Relaxes assumption that every tax filer is following the law; incorporates workers who operate legally in some work and illegally in other work
 - Multiply construction self-employment (in the ACS) by 44%; BEA

Models

- Hypothesis 1: the presence of state prevailing wage laws is negatively associated with informal employment
 - Model: $IE_{st} = \beta_0 + \beta_1 PW_{st} + \beta_2 IENC_{st} + \beta_2 X_{st} + \beta_3 Y_{st} + \alpha_s + \phi_t + \mu_{st}$
 - IE: informal employment
 - PW: indicator with a value of 1 if a state (s) had a prevailing wage law in year t, and 0 otherwise (obtained from Wage and Hour Division website)
 - IENC: non-construction informal employment
 - X: vector of state-aggregated construction industry controls
 - Y: vector of state political and legislative controls
 - α and ϕ : state and year fixed effects

Models

- X: state construction union density (Hirsch & Macpherson 2003), year-to-year construction employment growth, average firm size, year-to-year changes in building permits, and proportion employed in building (i.e., residential) construction
- Y: state minimum wage, project labor agreement (PLA)
 preemption, fair scheduling preemption, paid leave
 preemption

Models

- Hypothesis 2: states with stronger prevailing wage laws will have lower rates of informal construction employment than states with weaker laws
 - Model: $IE_{st} = \beta_0 + \beta_1 Weak_{st} + \beta_2 Average_{st} + \beta_3 Strong_{st} + \beta_4 IENC_{st} + \beta_5 X_{st} + \beta_6 Y_{st} + \alpha_s + \phi_t + \mu_{st}$
 - Same as before, except prevailing wage dummy is replaced by measures of prevailing wage strength
 - Weak: 1-6 points; Average: 7-11 points; Strong: 12+ points
- Hypotheses 3 and 4: same model as above, except measures of strength are replaced by each portion of the

Hypothesis 1 Results

TABLE 1

Effect of Prevailing Wage Laws on Informal Construction Employment

Variables	OLS	Log Odds	GLM
Prevailing wage	-0.022***	-0.157***	-0.113**
	(0.008)	(0.046)	(0.046)
Non-construction informal employment	-0.726***	-3.986***	-4.168***
	(0.203)	(1.253)	(1.149)
Union density	-0.020	-0.179	-0.129
	(0.058)	(0.371)	(0.317)
Employment growth rate	-0.187***	-0.957*	-1.211**
	(0.067)	(0.497)	(0.476)
Average firm size	-0.014***	-0.092***	-0.088***
50 000 000 - 1 1 000 000 000 000 000	(0.004)	(0.024)	(0.021)
Percent employed residential	0.698**	2.547	4.388*
	(0.330)	(2.452)	(2.297)
Building permits	0.018	0.077	0.085
	(0.013)	(0.080)	(0.066)
Minimum wage	0.006	0.064	0.030
	(0.008)	(0.049)	(0.042)
Fair scheduling preemption	-0.013*	-0.080*	-0.089**
	(0.007)	(0.042)	(0.038)
Paid leave preemption	-0.011*	-0.068*	-0.061*
	(0.006)	(0.040)	(0.032)
Project labor agreement preemption	-0.013**	-0.062	-0.070*
	(0.007)	(0.044)	(0.036)
Constant	0.260***	-0.612	-1.076*
	(0.080)	(0.593)	(0.549)
N	460	459	460
R^2	0.710	0.667	

Estimated coefficients in bold. Robust standard errors in parentheses. State and year fixed effects included in all models.

^{*}Statistically significant at the 10% level; ** at the 5% level; *** at the 1% level.

Hypothesis 2 Results

TABLE 2

Variables	OLS	Log Odds	GLM
Strong prevailing wage law	-0.026**	-0.208***	-0.141**
	(0.011)	(0.067)	(0.071)
Average prevailing wage law	-0.025***	-0.169***	-0.134**
	(0.009)	(0.059)	(0.053)
Veak prevailing wage law	-0.019**	-0.092**	-0.091**
	(0.008)	(0.045)	(0.041)
Non-construction informal employment	-0.723***	-3.944***	-4.160***
	(0.205)	(1.264)	(1.152)
Jnion density	-0.017	-0.164	-0.111
	(0.058)	(0.371)	(0.316)
Employment growth rate	-0.189***	-0.950*	-1.218**
	(0.068)	(0.499)	(0.484)
Average firm size	-0.014***	-0.091***	-0.087***
	(0.004)	(0.024)	(0.022)
Percent employed residential	0.723**	2.673	4.531**
	(0.332)	(2.477)	(2.311)
Building permits	0.018	0.080	0.086
	(0.013)	(0.080)	(0.066)
Ainimum wage	0.006	0.065	0.030
	(0.008)	(0.049)	(0.042)
air scheduling preemption	-0.011	-0.068	-0.076**
	(0.007)	(0.043)	(0.038)
Paid leave preemption	-0.012**	-0.076*	-0.064**
	(0.006)	(0.040)	(0.032)
Project labor agreement preemption	-0.013*	-0.053	-0.067*
	(0.007)	(0.046)	(0.038)
Constant	0.252***	-0.659	-1.124**
	(0.082)	(0.603)	(0.556)
V.	460	459	460
22	0.711	0.668	

Hypotheses 3 and 4

TABLE 3

Variables	OLS	Log Odds	GLM
Coverage threshold	-0.013**	-0.054	-0.066**
	(0.006)	(0.038)	(0.032)
Breadth of coverage	-0.003	-0.031	-0.012
	(0.005)	(0.033)	(0.031)
Setting of prevailing wage rate	-0.002	-0.015	-0.011
	(0.002)	(0.015)	(0.014)
Other factors	-0.002	0.010	-0.009
	(0.006)	(0.034)	(0.033)
Non-construction informal employment	-0.720***	-3.954***	-4.158***
	(0.203)	(1.266)	(1.148)
Union density	-0.024	-0.193	-0.150
	(0.057)	(0.367)	(0.312)
Employment growth rate		-0.936*	-1.189**
	(0.067)	(0.494)	(0.473)
Average firm size		-0.096***	
	(0.004)	(0.024)	(0.022)
Percent employed residential	0.693**	2.618*	4.325*
20 19 CONSTRUCTO	(0.330)	(2.478)	(2.263)
Building permits	0.018	0.080	0.087
	(0.013)	(0.080)	(0.065)
Minimum wage	0.007	0.066	0.035
8000 N 4000 N 900	(0.008)	(0.049)	(0.041)
Fair scheduling preemption	-0.013*	-0.078*	-0.089**
	(0.007)	(0.044)	(0.040)
Paid leave preemption	-0.013**	-0.077*	-0.069**
	(0.006)	(0.040)	(0.033)
Project labor agreement preemption Constant	-0.010	-0.047	-0.056
	(0.007)	(0.047)	(0.038)
	0.268***		-1.024*
17	(0.081)	(0.608)	(0.542)
N R ²	460 0.711	459 0.668	460
π*			

Estimated coefficients in bold. Robust standard errors in parentheses. State and year fix included in all models.

Summary

- State prevailing wage laws associated with 2.2% reduction in informality
 - Construction workers are 10.7% to 14.5% less likely to be employed informally in prevailing wage states
- Even having a weak law is enough to significantly curb informality
 - Weak laws associated with 1.9% reduction in informality
 - Construction workers are 8.7% to 8.8% less likely to be employed informally in states with weak laws
- Consistent with prior research outside of construction, which has found that increases in regulatory quality

Limitations

- Study's measurements of informality are best regarded as approximations
 - Assuming 44% of all self-employment activity is informal is subject to error
- Methodology cannot capture all types of fraud in construction
 - Example: a firm agrees to pay prevailing wage rates to payroll company, and indicates on certified payroll form that they did so
 - Then, payroll company only pays a fraction of the prevailing wage rate, leaving the rest for the contractor
- Contractors may respond to certified payroll requirements

Implications

- Prevailing wage laws benefit law-abiding construction firms
 - Can help correct market distortions caused by low-bid requirements
 - Make formal employment (and doing business legally) a better business decision

- Also benefit construction workers
 - Incentivizes playing by the rules and providing key labor law protections to workers

APPENDIX

Literature Review: What Explains Informality?

- Taxes (Friedman, Johnson, & Zoilo-Lobaton 2000)
 - Firms want to keep more profit for themselves
 - Weak regulations and enforcement fail to curb informality, allow it to continue
 - This incentivizes profit-maximizing firms to operate informally and avoid taxes

- Economic restructuring and workplace "fissuring" (Weil 2014)
 - Firms have shifted toward core competencies, away from activities not central to profitability (e.g., subcontracting)

- Consider a model where construction firms are heterogeneous
 - θ : productivity of each individual firm; function of k (capital) and λ (labor skill)
 - Product and labor markets are both competitive; formal and informal workers each supply one unit of labor, ℓ , at an identical opportunity cost (i.e., wage) of ω (Ulyssea 2018; Cuff et al. 2020)
- Define the output of a given firm, y, as a function of θ and ℓ

- Output is then given by $y(\theta, \ell) = \theta q(\ell)$, where the function **q** is assumed to be increasing and concave (Ulyssea 2018)
- Assume construction firms face two distinct choices for each project: (1) to operate formally, or (2) to operate informally
 - If firms choose informality, assume they pay no payroll or revenue taxes (Ulyssea 2018)
- Informal firms face detection probability, $\rho > 0$, by regulators
 - If detected, the outcome is that informal firms face a cost imposed by regulators, c

- Expected cost of detection: $E(D)_{ip} = \rho c$, by firm (i) and project (p)
- The profit function of an informal construction firm, indexed by firm and project, is then the following (based on Ulyssea 2018):
 - $\Pi^{I}_{ip}(\theta) = \max\{\theta q(\ell) \omega E(D)\}$
- Conversely, if a construction firm chooses to operate formally on a project, it elects to comply with regulations and pay all relevant taxes
 - Formal firms pay constant payroll tax on all workers, τ_w , and a revenue tax, τ_v

- However, given that formal firms are abiding by labor and employment law, they face no probability of evasion detection (i.e., $\rho = 0$); $\mathbf{E}(\mathbf{D})_{ip} = \mathbf{0}$ for formal firms
- Define profit function of a formal construction firm as follows (Ulyssea 2018):
 - $\Pi^{F}_{ip}(\theta) = \max\{(1 \tau_y)\theta q(\ell) (1 + \tau_w)\omega\}$
- Assuming construction firms are profit maximizers, I define the evasion decision as follows, based on Cuff et al. (2020):
 - Evasion Decision: A construction firm with parameters (θ, ω) decides to evade labor market regulations and operate informally if and only if $\Pi^{I}_{ip}(\theta) \geq \Pi^{F}_{ip}(\theta)$.

Prevailing Wage Laws

- Let PW denote a prevailing wage requirement
 - Let PW = 1 denote a project subject to these requirements and let PW = 0 denote a project not subject to these requirements
- For firms choosing to operate informally, indexed by firm and project, we have:

•
$$\rho_{ip} | PW = 1 > \rho_{ip} | PW = 0$$

- As ρ increases, the expected cost of detection, E(D), also increases. An increase in ρ lowers the profits of informal firms, directly following from equation (1):
 - $\delta\Pi^{I}_{ip}(\theta, \omega) / \delta\rho < 0$.

Prevailing Wage Laws

- We next note that the profits of formal firms remain unaffected by this since for formal firms, the probability of evasion detection is 0. Therefore, for formal firms:
 - $\delta \Pi^{F}_{ip}(\theta, \omega) / \delta \rho = 0$.
- Thus, all else equal, prevailing wage requirements increase the probability of evasion detection, thereby lowering profits of firms choosing to operate informally
 - Conversely, since formal firms face a probability of evasion detection of 0, their profits are unchanged by prevailing wage requirements
- *Hypothesis:* The presence of state prevailing wage laws is negatively associated with informal employment.